Computer assisted spine surgery.
نویسندگان
چکیده
When inserting screws into a vertebral pedicle, the surgeon usually exposes the back part of the vertebra and uses his or her anatomic knowledge to align the drill in the proper direction. A slight error in direction may result in an important error in the position of the tip of the screw. This is done with no direct visibility of crucial structures (spinal cord, pleura, vessels). Statistical analysis of a series of surgical procedures has shown that 10% to 40% of the screws are not installed correctly. To reduce the risk of complication, a computer assisted method is proposed that enables the surgeon to place a screw at a position preoperatively defined in 3 dimensions using computed tomography images. This allows the surgeon to align a standard surgical drill with the optimal position and direction. The depth of the pilot hole during drilling also is monitored by the system to prevent penetration of the anterior cortex of the vertebral body. Using this procedure, in vitro tests were performed and showed that an accuracy of less than 1 mm can be obtained. Clinical trials were done in 10 patients who suffered severe scoliosis or spondylolisthesis. The trajectory of the holes drilled in L2, L3, L4, and L5 vertebrae were checked for all clinical tests. Postoperative radiographs and computed tomography scans showed that the screws were well inserted in each plane for each pedicle. This technique also can be used to perform osteosynthesis at the thoracic and cervical levels.
منابع مشابه
Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis
Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...
متن کاملSegmentation of MR images for computer-assisted surgery of the lumbar spine.
This paper describes a segmentation algorithm designed to separate bone from soft tissue in magnetic resonance (MR) images developed for computer-assisted surgery of the spine. The algorithm was applied to MR images of the spine of healthy volunteers. Registration experiments were carried out on a physical model of a spine generated from computed tomography (CT) data of a surgical patient. Segm...
متن کاملImproved accuracy of computer-assisted cervical pedicle screw insertion.
OBJECT The authors introduce a unique computer-assisted cervical pedicle screw (CPS) insertion technique used in conjunction with specially modified original pedicle screw insertion instruments. The accuracy of screw placement as well as surgery-related outcome and complication rates were compared between two groups of patients: those in whom a computer-assisted and those in whom a conventional...
متن کامل6 Computer-assisted Minimally Invasive Spine Surgery State of the Art 6.2 Computer-assisted Orthopaedic Surgery
With the advent of precise preand intraoperative imaging means, the development of sophisticated image data visualization, and the accessibility of submillimetric, real-time tracking of objects in space, surgical navigation systems have been created that aim at enhanced surgical accuracy and ultimately improved clinical outcome [3, 6, 9, 13, 17, 20]. Numerous studies have shown the superiority ...
متن کاملTemplate Guided Intervention: Interactive Visualization and Design for Medical Fused Deposition Models
Extended Abstract: We are combining surgical planning techniques with computer aided manufacturing systems to create custom surgical aids for orthopedic surgery. Our first application area is planning and controlling the trajectories of pedicle screws for spine surgery. The goal is to manufacture a physical jig that conforms to the contours of the patient’s vertebrae. The jig is constructed wit...
متن کاملInternational Journal of Computer Assisted Radiology and Surgery
Abstract: Purpose. Dynamic implants for the human spine are used to re-establish regular segmental motion. However, the results have often been unsatisfactory and complications such as screw loosening are common. Individualization of appliances and precision implantation are needed to improve the outcome of this procedure. Computer simulation, virtual implant optimization and image-guidance wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer aided surgery : official journal of the International Society for Computer Aided Surgery
دوره 3 6 شماره
صفحات -
تاریخ انتشار 1997